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Abstract: The Chinese commodity futures market has become an essential component of the global maritime transport 

system as international trade continues to expand. The China Containerised Freight Index (CCFI) serves as a valuable indicator 

of the maritime industry's health and is highly sensitive to fluctuations in the Chinese commodity futures market. However, 

there is a lack of research utilizing Chinese commodity futures prices as predictors for the CCFI. This study analyzes a dataset 

comprising 29,308 observations collected daily from March 24, 2017, to May 27, 2022. We conduct a comparative analysis of 

CCFI prediction using Convolutional Neural Networks (CNN), Long Short-Term Memory networks (LSTM), and a hybrid 

CNN-LSTM model. The CNN-LSTM model effectively identifies nonlinear features within CCFI data and captures the long-

term dependencies of the index over time, as evidenced by our results. This model outperforms the individual CNN and LSTM 

approaches and demonstrates high adaptability to fluctuations arising from random sample selection, data frequency, and 

structural discontinuities within the sample population. This study highlights the potential of machine learning methods for 

forecasting shipping indices, thereby enhancing understanding of the relationship between the shipping industry and financial 

markets. The findings provide logistics companies, shipping organizations, and governments with robust risk management and 

decision-support tools. 
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1 Introduction 

The container shipping industry is a critical component of global trade integration, facilitating the large-scale movement 

of international goods and significantly influencing the efficiency and stability of global supply chains. Freight rates in this 

sector are highly volatile, primarily driven by fluctuations in the demand for transport services and the supply of capacity. 

These rates are of paramount importance to all stakeholders involved in international maritime trade, including shippers and 

carriers, and play a central role in container shipping costs. Therefore, the ability to accurately predict future fluctuations in 

container freight rates is essential for informed decision-making. The China Container Freight Index (CCFI) is a vital tariff and 

price indicator in the shipping sector, widely recognized for its capacity to accurately reflect economic activity dynamics. The 

CCFI serves as a key metric for evaluating the health of the shipping industry, global trade dynamics, containerized transport, 

and the balance between supply and demand. 

In the context of economic globalization, the Chinese futures market has emerged as a critical component of the global 

maritime financial ecosystem. Commodity prices in the Chinese futures market significantly impact the shipping industry. The 

Chinese futures market is closely linked to the CCFI, a crucial indicator of container shipping market conditions, and is highly 

sensitive to its fluctuations (Mo et al., 2017). Fluctuations in the CCFI are significant factors in the volatility of futures market 

prices, affecting market sentiment and investor expectations (Kang and Yoon, 2019). Investors and financial analysts frequently 

use shipping indices such as the CCFI as economic indicators to anticipate changes in commodity markets, stocks, and other 

financial markets. Concurrently, bulk carrier owners, charterers, and other transport entities increasingly rely on the CCFI for 

decision-making when formulating strategies and executing business plans. Consequently, a comprehensive understanding of 

the relationship between the futures market and the CCFI is essential for developing effective investment risk management 

strategies and accurately predicting market dynamics (Prokopczuk, 2011). 

In recent years, an increasing number of studies have focused on the forecasting of the CCFI, recognizing it as a non -

stationary, nonlinear time series influenced by a variety of complex variables (Charfeddine et al., 2019; Huo and Ahmed, 2018). 

However, early studies primarily employed causality-based econometric models for CCFI forecasting, which require a certain 

level of regularity and smoothness in the input data. Additionally, the accuracy of these econometric mo dels is susceptible to 

significant errors due to the characteristics of CCFI data. Research has shown that AI-based methodologies offer numerous 

advantages over conventional statistical and econometric models (Cartwright and Riabko, 2015). As a result, researchers have 

begun to implement artificial intelligence (AI) methodologies, including artificial neural networks (ANNs), long short-term 

memory methods (LSTMs), and nonlinear regression analyses, to forecast the CCFI. Thus, accurately predicting the CCFI is 

imperative for maritime business stakeholders to mitigate market risk and engage in strategic planning. This paper poses two 

fundamental research questions: Which forecasting model can enhance the accuracy of CCFI forecasts?  

To address these research questions and fill the gap in CCFI prediction research, this study conducts a comparative analysis 

using CNN, LSTM, and CNN-LSTM models. This investigation utilizes a dataset comprising 29,308 daily observations from 

March 24, 2017, to May 27, 2022. The results indicate that the CNN-LSTM model effectively identifies nonlinear properties 

and captures complex fluctuations in CCFI data. In the CCFI prediction task, this model outperforms both the individual CNN 

and LSTM models, achieving an R² value of 71.68%. It provides a more accurate representation of the dynamics of the shipping 

market. 

This paper makes several contributions. First, it compares the machine learning models of CNN, LSTM, and CNN-LSTM 

from a machine learning perspective, enhancing the accuracy of CCFI predictions and broadening the scope of machine learning 

research. It also offers valuable insights for the application of machine learning in the field of CCFI. Second, this study expands 

the application of machine learning methods within the realm of shipping finance, demonstrating the significant potential of 

the Chinese futures market in forecasting the global shipping index. Additionally, it provides a novel perspective on the intricate 

relationship between the Chinese financial market and the shipping industry. Lastly, the model's applicability is not limited  to 

CCFI forecasts; it can also be employed to track recent advancements in the shipping finance sector or extended to include 
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forecasts of other indices. This capability allows stakeholders to modify their portfolios and operational strategies in real time, 

fostering sustainable business development and maintaining the overall stability of financial markets.  

The subsequent sections of this investigation are summarized as follows: Section 2 reviews the CCFI forecasting 

methodology and the relevant literature on Chinese futures. Section 3 details the data and integration methodology employed. 

Section 4 examines and contrasts the primary empirical findings. Finally, Section 5 summarizes and discusses the results, while 

Section 6 delineates the study's limitations and offers suggestions for future research.  

2 Literature Review 

2.1. CCFI Forecasting Study 

The China Container Freight Index (CCFI) was introduced by the Shanghai Stock Exchange (SSE) in 1998 to address the 

rapid expansion of China's container shipping market and to provide a standardized tool for predicting and measuring 

fluctuations in freight rates (Kang and Yoon, 2019). The CCFI encompasses both spot and contract freight rates, with data 

sourced from the voluntary contributions of 22 reputable companies with significant market shares (Bosch and Pradkhan, 2015).  

This includes a diverse range of organizations, from small businesses to major policymakers involved in containerized trade 

(Bohl et al., 2021). The CCFI reflects the overall level of freight rates in China's export container market, as reported by ten 

Chinese hub ports: Dalian, Tianjin, Qingdao, Shanghai, Nanjing, Ningbo, Xiamen, Fuzhou, Shenzhen, and Guangzhou. Given 

the prominence of these ports in global container throughput rankings and their inclusion in outbound container service 

rotations from the Far East (FE), the CCFI serves as a fair representation of the region as a whole (Prokopczuk, 2011). 

Furthermore, globally recognized liner companies, including CMA-CGM, Hamburg Line, COSCO, Maersk, and Hapag-Lloyd, 

also contribute data to the CCFI (Prokopczuk, 2011). As a result, the CCFI is highly regarded within the container shipping 

industry and is frequently utilized as a base asset in forward rate agreements or as a floating element in index -linked container 

contracts, thus making it a critical freight indicator for global container trade. It is considered the second most effective freight 

rate index globally, following the Baltic Dry Index (BDI) (Bosch and Pradkhan, 2015). Consequently, the CCFI is regarded as 

a barometer of the Chinese shipping industry. 

Despite the existence of other container freight indices, such as the Global Container Index (WCI) released by Drewry in 

2021, the Ningbo Container Freight Index (NCFI) from the Ningbo Shipping Exchange (NSX), the Baltic Global Container 

Freight Index (FBX), and the recent Xeneta Shipping Index (Bohl et al., 2021), the CCFI has garnered significant attention in 

the academic community. Recent years have seen an increase in comprehensive research on the CCFI. Chen et al. (2021) 

proposed a forecasting model that integrates empirical modal decomposition with grey-wave forecasting methods, which are 

predicated on the CCFI. Their model divides the time series into long-term trends and short-term cycles, forecasting the trend 

period using a generalized GM and the cycle period using a grey wave forecasting model. The findings indicate that this hybrid 

model significantly enhances forecasting accuracy, providing valuable decision support for practitioners hedging risk through  

forward rate agreements. Additionally, Schramm and Munim (2021) explored the potential of the autoregressive integrated 

moving average (ARIMA) multivariate modeling framework, incorporating soft-survey-generated sentiment and confidence 

information as variables to predict the performance of the CCFI. Their study employed exogenous variables (ARIMAX) and 

vector autoregression (VAR), concluding that the forecasting accuracy of ARIMAX is significantly higher than that of the 

basic ARIMA model when combined with soft factual information. Nevertheless, only a limited number of studies have 

established a connection between the CCFI and the Chinese futures market.  

2.2. Futures Market Research 

China's commodity futures market holds a crucial position in the global economy, providing participants with multiple 

functions, such as price discovery, risk management, and investment speculation (Bosch and Pradkhan, 2015). It has 

significantly impacted economic stability, financial innovation, and market efficiency (Mo et al., 2017). With growing 

academic interest in commodity futures markets, the interconnections between China's futures financial markets and various 
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other markets have been widely studied (Kang and Yoon, 2019). One central theme in futures market research is price volatility 

analysis, as volatility is a key factor influencing trading decisions and risk management strategies. Existing studies have 

employed various statistical and econometric models to examine the drivers of price volatility in futures markets, covering 

areas such as futures and freight (Prokopczuk, 2011), futures and stock markets (Huo and Ahmed, 2018), futures and energy 

(Charfeddine et al., 2019), futures and agricultural products (Cartwright and Riabko, 2015), and futures and metals (Bosch and 

Pradkhan, 2015), among others. 

Another area of interest in futures market research is market efficiency. Researchers have focused on analyzing the 

operational efficiency of futures markets by examining factors such as regulatory reforms, speculative behavior, and 

information efficiency (Bohl et al., 2021; Mohanty and Mishra, 2020). Bandyopadhyay and Rajib explored the asymmetric 

relationship between the Baltic Dry Index (BDI) and commodity spot prices (Bandyopadhyay and Rajib, 2023). These findings 

provide valuable insights into the information content of futures prices and potential opportunities. Furthermore, the impact of 

external factors on futures market behavior has garnered research interest, including macroeconomic indicators, policy changes, 

and technological advancements. Some studies have examined the effects of these factors on futures market volatility, price 

discovery, and liquidity (Siami-Namini et al., 2019). 

In recent years, there has been an increased focus on applying machine learning algorithms to futures market research. 

Techniques such as neural networks and ensemble methods have been employed to identify patterns, predict futures price 

movements, and develop automated trading strategies (Bandyopadhyay and Rajib, 2023). These algorithms have demonstrated 

promising results in terms of prediction accuracy and robustness. For instance, Siami-Namini et al. (2019) conducted a study 

on forecasting stock indices from six different markets and compared the performance of ARIMA, LSTM, and BiLSTM models, 

finding that the use of BiLSTM significantly improved forecasting accuracy. Lin et al. (2022) utilized a deep learning (DL) 

denoising technique combined with a BiLSTM-Attention-CNN model to predict crude oil futures prices, showing that the 

combined model performed more accurately than any single model. However, few studies have investigated the interaction 

between the CCFI and Chinese futures markets, and there remains a gap in research linking the CCFI with the Chinese 

commodity futures market. Therefore, to examine the linkage between the CCFI and the Chinese commodity futures market, 

we propose a deep learning integrated model using CNN-LSTM to predict the CCFI utilizing big data from the Chinese 

commodity futures market. 

3 Research Methodology 

3.1 Data Description 

The models in this study are developed using two discrete datasets: the China Container Freight Index (CCFI) data, the 

Clarkson Average Container Ship Earnings (CACE), and the Shanghai Container Freight Index (SCFI) data obtained from the 

Shanghai Shipping Exchange and Clarkson Shipping Company, respectively. The China Commodity Futures dataset 

encompasses trading prices of commodity futures on China's four most renowned trading platforms: the China Financial 

Futures Exchange, the Shanghai Futures Exchange, the Dalian Commodity Exchange, and the Zhengzhou Commodity 

Exchange. The dataset includes daily data from March 24, 2017, to May 27, 2022, totaling 29,308 observations. These extensive 

sample datasets provide a sufficient amount of input data for training, testing, and evaluating the CNN-LSTM integrated model. 

In this study, the dependent variable is the CCFI, while the independent variables include the following: Clarkson Average 

Container Ship Earnings (CACE), Shanghai Containerized Freight Index (SCFI), Rebar Futures (RB), Copper Electrode 

Futures (CU), Gold Futures (AU), Silver Futures (AG), Iron Ore Futures (IO), Cotton Futures (CF), Soybean I Futures (YSA), 

Corn Futures (YC), Power Coal Futures (ZC), Coking Coal Futures (JM), CSI 300 Index Futures (IF), and SSE 50 Index 

Futures (IH). Detailed statistics of all data are summarized in Tables 1 and 2. 
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Tables 1—Variables for the Research 

Variables Frequency Abbreviation Unit 

China Containerised Freight Index  Day CCFI Index 

Clarksons Average Containership Earnings 

Shanghai Containerised Freight Index  

Day 

Day 

CACE 

SCFI 

$/day 

Index 

Rebar Futures Day RB Yuan/Ton 

Copper cathode futures Day CU Yuan/Ton 

gold futures Day AU Yuan/g 

Silver futures Day AG Yuan/kg 

Iron Ore Futures Day IO Yuan/Ton 

cotton futures Day CF Yuan/Ton 

Soybean No. 1 Futures Day YSA Yuan/Ton 

Corn Futures Day YC Yuan/Ton 

Thermal Coal Futures Day ZC Yuan/Ton 

Coking coal futures Day JM Yuan/Ton 

CSI 300 Futures Index Day IF Yuan 

SSE 50 Futures Index Day IH Yuan 

Tables 2—Descriptive Statistics for CCFI Forecast Data 

Variables Mean Std. Min. Max. 

CCFI 1505.161679 986.809956 743.710000 3587.910000 

CACE 29319.807275 27838.211729 8647.518530 87777.946380 

SCFI 1894.889701 1492.144342 646.590000 5109.600000 

RB 4009.615672 641.769392 2920.000000 5765.000000 

CU 55330.485075 9693.864548 38380.000000 74840.000000 

AU 336.907239 52.415779 263.800000 450.460000 

AG 4380.097015 713.004230 3068.000000 6652.000000 

IO 689.212687 200.473637 423.000000 1243.500000 

CF 15613.003731 2613.025574 10735.000000 21910.000000 

YSA 4564.078358 1086.497636 3139.000000 6463.000000 

YC 2180.313433 436.592439 1618.000000 3027.000000 

ZC 672.697015 152.422721 494.800000 1647.600000 

JM 1574.718284 543.314967 943.000000 3551.000000 

IF 4134.270149 614.508576 3003.600000 5748.800000 

IH 2923.479851 362.008854 2292.600000 4003.600000 

Line graphs for each indicator from March 24, 2017, to May 27, 2022, are depicted in Figures 1 to 16. These charts 

illustrate the fluctuations of the variables over recent years and serve as a foundation for our examination of the model's 

outcomes. By utilizing these line charts, we can gain a comprehensive understanding of the periodicity and trends of the 

indicators, enhancing our comprehension of the current state and future trajectory of the shipbuilding cost market. Additiona lly, 

these charts assist in assessing the predictive efficacy of the CNN, LSTM, and CNN-LSTM models, thereby deepening our 

understanding of the shipping market. 

 

Figure 1. Line Graph of Raw Data for All Data  
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Figure 2. CCFI Raw Data Line Graphs 

 

Figure 3. CACE Raw Data Line Graphs 

 

Figure 4. SCFI Raw Data Line Graphs 

 

Figure 5. RB Raw Data Line Graphs 

 

Figure 6. CU Raw Data Line Graphs 
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Figure 7. AU Raw Data Line Graphs 

 

Figure 8. AG Raw Data Line Graphs 

 

Figure 9. IO Raw Data Line Graphs 

 

Figure 10. CF Raw Data Line Graphs 

 

Figure 11. YSA Raw Data Line Graphs 
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Figure 12. YC Raw Data Line Graphs 

 

Figure 13. ZC Raw Data Line Graphs 

 

Figure 14. JM Raw Data Line Graphs 

 

Figure 15. IF Raw Data Line Graphs 

 

Figure 16. IH Raw Data Line Graphs 

In the field of machine learning, correlation is frequently employed as a preliminary technique to identify relationships 

between variables, which is essential for enhancing the precision of predictive models. A heat map is a graphical representation 
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of the correlation between numerical variables, illustrating the connections among various variables. The value in each cell 

denotes the nature of the relationship between two entities, with higher values indicating a stronger link and lower values 

indicating a weaker link. The impact of independent features on intuitive predictions can be determined by examining the 

positive and negative correlations among eigenvalues. A high positive correlation is typically observed when the Pearson 

correlation coefficient exceeds 0.7. The correlation among the dataset's features is illustrated in Figure 17.  

 

Figure 17. Correlation between data. 

3.2 Model 

Convolutional Neural Networks (CNN): Prior research has indicated that CNNs exhibit significant potential in resolving 

time series issues. In the field of image recognition, CNNs have achieved remarkable success. The CNN architecture comprises 

a convolutional layer, a pooling layer, and a fully connected layer, as illustrated in Figure 18.  The formula for extracting features 

through one-dimensional convolution is represented as follows: 

(1)aj
(l+1)

(τ) = σ [bj
l + ∑  F′

j=1  Kij
l (τ) × aj

(l)
(τ)] 

Where. aj
′(τ) :a feature mapping j  in layer l; σ :an activation function ReLU; :a bias; :an activation function ReLU bj

l :a 

bias; :a number of feature maps on layer Fl :a number of feature maps on layer l feature map f :a convolution of layer feature 

map Kif
l  :a convolution of layer l eature map f to create feature map j in layer l + 1 . 

After the convolution process, the pooling layer reduces the dimensionality of the convolution layer output. This 

effectively decreases the computational load and enhances the robustness of the model. The pooling operation can be defined 

as follows: 

(2)Ak
l (i, j) = [∑  f

x=1   ∑  f
y=1  Ak

l (s0i + x, s0 j + y)p]
1

p 
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Where f :a convolution kernel size; :one-step length; :one-step length s0 :one-step length; :a number of filler layers, when 

p :a number of filler layers, when p infinity pooling region to take the maximum value, that is, the maximum pooling.  

 

Figure 18. Convolutional neural network structure diagram 

Table 3—CNN Final Model Parameters 

Layer (Type) Output Shape Param# 

Input_1 (Input Layer) [(None, 3, 5)] 0 

conv1d (Conv1D) (None, 3, 32) 512 

conv1d_1 (Conv1D) (None, 3, 64) 6208 

flatten_ (Flatten) (None, 192) 0 

dense (Dense) (None, 128) 24704 

dense_1 (Dense) (None, 32) 4128 

dense_2 (Dense) (None, 1) 33 

Notes: Total params: 35,585 

Trainable params: 35,585 

Non-trainable params: 0 

Long Short-Term Memory Networks (LSTM): Long Short-Term Memory (LSTM) networks represent a significant 

advancement over traditional Recurrent Neural Networks (RNNs), as depicted in Figure 19. They introduce three gated units: 

the input gate, the forget gate, and the output gate. The forget gate determines which information should be retained or discarded 

from the cell state, while the input gate selectively incorporates new information into the cell state. Finally, the output g ate 

passes the updated cell state to the next time step. These gated mechanisms enable LSTMs to be more effective than traditional 

RNNs in storing and retrieving information across long sequences, thus allowing for a deeper exploration of data over extended 

time spans. Furthermore, LSTMs address the issues of vanishing and exploding gradients, significantly enhancing the model's 

learning capability and stability. 

 

Figure 19. LSTM network structure diagram. 
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The LSTM network formula is as follows 

(3)ft = σ(Wf[ht−1, xt ] + bf) 

(4)it = σ(Wi[ht−1, xt] + bi ) 

(5)C̃t = tanh (Wc[ht−1, xt] + bc ) 

(6)Ct = ftCt−1 + itC̃t 

(7)ot = σ(Wo[ht−1, xt ] + bo) 

(8)ht = ottanh (Ct) 

where ft、it、ot are the outputs of the forgetting gate, the input gate and the output gate, respectively; C̃t is the cell state 

at the current moment; Ct−1 is the cell state at the previous moment; Ct is the updated cell state; Wf、Wi 、 Wc、Wo and bf、

bi、bc、bo are the weight matrices and bias vectors of the forgetting gate, input gate, current cell state, and output gate, 

respectively; ht−1 is the output of the previous moment; xt is the input of the current moment; ht is the final output of the 

current moment; and σ is the sigmoid function. 

 

Table 4—LSTM final model parameters 

Layer (Type) Output Shape Param# 

Input_2 (Input Layer) [(None, 3, 5)] 0 

lstm (LSTM) (None, 3, 32) 4864 

lstm_1 (LSTM) (None, 64) 24832 

flatten_1 (Flatten) (None, 64) 0 

dense_ 3(Dense) (None, 128) 8320 

dense__4 (Dense) (None, 32) 4128 

dense_5 (Dense) (None, 1) 33 

Notes: Total params: 42,177 

Trainable params: 42,177 

Non-trainable params: 0 

CNN-LSTM Model: The CNN-LSTM model is a deep learning architecture that combines the strengths of Convolutional 

Neural Networks (CNNs) and Long Short-Term Memory Networks (LSTMs). CNNs excel at processing spatial data, such as 

images, and extracting local features through convolutional and pooling layers, while LSTMs are adept at processing time -

series data and learning long-term dependencies. This combination enables CNN-LSTM models to effectively extract useful 

information and generate accurate predictions when dealing with complex multidimensional data, such as the CCFI.  

The complexity and multidimensional nature of CCFI data necessitate the use of advanced predictive models, such as 

CNN-LSTM, to effectively extract intrinsic useful information. Through its unique structural design, the model first employs 

CNN to capture and extract local features of the data, thereby reducing dimensionality while maintaining critical time series 

information. This prepares the subsequent LSTM network, which leverages its powerful time series processing capability to 

explore long-term dependencies in the CCFI time series. This model combination not only significantly improves the accuracy 

of CCFI predictions but also enhances the model's understanding of the complexities inherent in CCFI movements.  

In addition, the application of the CNN-LSTM model in CCFI forecasting brings several significant advantages: firstly, it 

surpasses traditional time series forecasting methods in accuracy, effectively capturing complex patterns and trends in the d ata, 

which is crucial for business. Secondly, the model demonstrates robustness to noise and outliers, particularly important in the 

shipping industry, which is often subject to external factors, thus improving the reliability of forecasts. Furthermore, the model 

is capable of handling large volumes of data and can be easily extended to accommodate a wider range of datasets, making it 

well-suited for the dynamic and ever-evolving nature of the shipping and finance industries.  
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Figure 20. CNN-LSTM Model   

 

Table 5—CNN-LSTM final model parameters 

Layer (Type) Output Shape Param# 

Input_3 (Input Layer) [(None, 3, 5)] 0 

conv1d_2 (Conv1D) (None, 3, 32) 512 

conv1d_3 (Conv1D) (None, 3, 64) 6208 

lstm_2 (LSTM) (None, 3, 32) 12416 

flatten_4 (Flatten) (None, 96)   0 

dense_6 (Dense)     (None, 128) 12416 

dense_7 (Dense)     (None, 32)    4128 

dense_8 (Dense)     (None, 1)   33 

Notes: Total params: 35,713 

Trainable params: 35,713 

Non-trainable params: 0 

4 Results 

4.1 Data Analysis Process 

In this research project, we conducted a comparative analysis of three distinct models (CNN, LSTM, and CNN-LSTM) to 

evaluate their effectiveness in predicting the China Container Freight Index (CCFI). The results of the models are represented 

in a series of graphs, demonstrating their effectiveness in quantifying the loss function as mean squared error (MSE) using data 

from both the training and test sets. Additionally, the prediction results for the training set, prediction set, and actual v alues 

will provide a concise summary of the overall performance comparison.  

We began by examining the loss trajectories of each of the three models (Figures 21, 22, 23). The models were evaluated 

under three distinct scenarios: underfitting, appropriate fitting, and overfitting, utilizing the aforementioned trajectories  as 

metrics. Underfitting is indicated when the validation loss exceeds the training loss. Conversely, overfitting is characterized by 

a substantial discrepancy between the validation and training losses, or by an upward trend in the validation loss. The 

convergence of the training and validation loss curves is indicative of an acceptable fit. The x-axis represents the number of 

iterations, while the y-axis displays both training and validation losses. The training loss is symbolized by a blue line, while 

the validation loss is visually represented by an orange line. 
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Figure 21. CNN Loss Curves 

 

Figure 22. LSTM Loss Curves 
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Figure 23. CNN-LSTM Loss Curves 

To provide a succinct summary of the overall performance comparison, we compiled the prediction outcomes for the CNN, 

LSTM, and CNN-LSTM models on both the training and test sets, including the actual values (see Figures 24, 25, and 26). The 

CNN-LSTM model exhibits the most favorable performance, as evidenced by the results in Figure 26. In our research, we 

implemented a rigorous data handling protocol that included three distinct phases: validation, training, and testing. Each phase 

is essential for assessing the CNN-LSTM model's performance. The dataset was distributed among these three subsets in a 9:1 

ratio, ensuring a sufficient amount of data for training while preserving a valid testing set to evaluate the model's general izability 

and accuracy. The model's capacity to generalize to unseen data is enhanced by its increased ability to learn from diverse 

instances, achieved by utilizing a larger portion of the dataset for training. Although the validation and test sets are smaller in 

size, they are crucial for evaluating the model's accuracy and robustness, ensuring that the model is not only precise but also 

dependable in real-world scenarios. 

The data was partitioned temporally, with each subset selected from consecutive time windows. Data from the earliest 

time points was included in the training set, allowing the model to learn from historical information. The validation set was  

formed from a subsequent time window, enabling the model to adjust to temporal changes not present in the training data. The 

model's future prediction capabilities were unbiasedly evaluated by incorporating data from a later time window into the test ing 

set. The models were able to generate predictions for multiple future time steps by employing a multi-step ahead forecasting 

approach, which is essential for time series data. However, it is widely recognized that the efficacy of deep learning models  

such as CNNs and LSTMs can be compromised by extended forecasting horizons. To mitigate this issue, we implemented a 

sliding window prediction method, which involved training and validating the model on shorter subsequences to ensure 

robustness. Figure 26 demonstrates that the CNN-LSTM model outperformed the CNN and LSTM models in terms of 

forecasting ability and accuracy. This suggests that the CNN-LSTM architecture effectively captured the intricate temporal 

dependencies in the data, thereby improving the model's capacity to  generate reliable multi-step forecasts. 
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Figure 24. CNN Comparison of raw data, training process and testing process  

 

Figure 25. LSTM Comparison of Raw Data, Training Process and Testing Process  

 

Figure 26. CNN-LSTM Comparison of Raw Data, Training Process and Testing Process  

4.2 Model Assessment 

As evaluation metrics, we utilized the mean squared error (MSE) and the coefficient of determination (R²). The following 

are the mathematical expressions that represent these metrics. 

(9)
MSE =

1

n
∑  n

i=1 (yi − ŷl)
2

R2 = 1 −
∑  n

i=1 (yi−ŷl)
2

∑  n
i=1

(y̅l−ŷl)2

 

Notes. yi is the true value; is the predicted value; ŷl is the predicted value; is the average value. y‾l is the average value. 

After completing 100 simulation iterations, the mean R² scores for the three models across the training and test datasets 

were computed. The comparative analysis presented in Table 6 illustrates that the CNN-LSTM integrated model exhibits 

superior performance, as evidenced by its R² value of 71.68%. 

Tables 6—Model Performance Comparison  

Model MSE MAE R²  

CNN 14135.560405 104.764020 0.538402 

LSTM 11651.239342 96.082811 0.619528 

CNN-LSTM 8673.962229 82.605941 0.716751 

5 Discussion and Conclusions 

The China Containerized Freight Index (CCFI) is a pivotal indicator of the shipping industry, international trade, and the 

global economy. Establishing an accurate CCFI forecasting model is a valuable tool and prerequisite for effective shipping 

management, investment, and production planning (Bandyopadhyay & Rajib, 2023). This study aims to enhance the accuracy 

of CCFI forecasting by developing an advanced model and applying it to actual operations in the shipping and financial 

industries. 
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The findings of this investigation indicate that to improve the precision of CCFI predictions, we implemented a 

combination of CNN, LSTM, and CNN-LSTM methodologies tailored to CCFI characteristics. Utilizing a total of 29,308 

observations from 24 March 2017 to 27 May 2022, we assessed the predictive capabilities of the proposed model using daily 

big data. The results demonstrate that the optimized CNN-LSTM integrated model possesses significant advantages over the 

CNN and LSTM models. The model’s structure is objectively determined based on the performance of the validation set, 

revealing hidden nonlinear features in CCFI predictions. Furthermore, the model accommodates random sample selection, data 

frequency, sample structure breaks, and considers candidate hyperparameters, memory length, input variables, and training set  

size. Our comparative analysis shows that the CNN-LSTM model is adept at accurately identifying and predicting patterns in 

complex data, as evidenced by an R² value of 71.68%, surpassing the individual R² values of the CNN and LSTM models. 

This indicates a relatively consistent fit with the fluctuations in CCFI.  

5.1 Theoretical Contributions 

This paper makes substantial and multifaceted contributions to the field. Firstly, it advances the body of research on 

machine learning applications in finance and shipping. The utilization of three machine learning models not only provides a 

more precise forecasting tool for the shipping market but also establishes an analytical framework for examining the interaction 

between the shipping and financial sectors. Although scholars have shown interest in forecasting CCFI (Kang & Yoon, 2019), 

there remains a lack of research integrating CNN, LSTM, and CNN-LSTM within the context of the Chinese commodity futures 

market for CCFI predictions. Consequently, it is crucial to investigate the significance of the Chinese futures market in 

forecasting CCFI using machine-based modeling. Financial investors can make more informed decisions and accurately 

identify investment opportunities by understanding and forecasting CCFI trends. Similarly, maritime market participants, 

including shipowners and shipping companies, can better manage risk and allocate capital by comprehending the potential 

impact of the financial market on their operations. Our machine learning research not only provides novel insights into the 

complex dynamics of the global shipping market but also highlights the relationship between the real economy and financial 

markets. 

Secondly, by integrating CNN and LSTM models, we demonstrate that the combined CNN-LSTM model exhibits superior 

predictive capability compared to individual models. CNNs are primarily focused on processing spatially hierarchical data, 

while LSTMs excel in learning time series data. The integrated CNN-LSTM model is well-suited for managing data that is 

both spatially and temporally stratified, which is essential for predicting complex time series data like CCFI, influenced by  

various factors. This research thereby enhances the prediction accuracy and robustness of CCFI and builds upon the work of 

Munim and Schramm (Kang & Yoon, 2019), offering new perspectives on the relationship between CCFI and a diverse array 

of complex futures prices. 

5.2 Management Contribution 

The managerial implications of predicting trends in CCFI are significant. Initially, logistics companies rely on accurate 

shipping price information to create cost budgets and transport plans. By examining CCFI, logistics companies can forecast 

fluctuations in shipping prices, enhancing service quality, reducing costs, and optimizing transport routes and cargo loading 

strategies. Moreover, logistics companies can leverage CCFI information to mitigate transport cost risks by securing transport 

costs through financial instruments like futures contracts, thus preventing losses from price fluctuations.  

Secondly, the shipping market's volatility makes it challenging to anticipate market risks. This research assists investors 

and shipping companies in identifying market risks and developing effective risk management strategies. For instance, shipping 

companies can use CCFI forecasts to rationally organize container leasing, maintenance, and management, thereby mitigating 

the impacts of market fluctuations. Investors can monitor CCFI forecast trends and adjust their investment portfolios to 

diversify risks at appropriate times. 

Lastly, this investigation serves as a crucial resource for government bodies concerning the financial operating conditions 

of the shipping market. By monitoring CCFI forecasts, the government can timely evaluate market dynamics, investigate 
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container-related pricing strategies, and develop policies that promote the healthy development of the shipping industry. 

Additionally, this research contributes to enhancing the overall competitiveness of the industry, facilitating the deep integ ration 

of the shipping and financial markets, and supporting the stable and sustainable development of both sectors.  

6 Limitations and Future Research 

Our research presents several limitations that suggest directions for future work. The predictive capabilities of the CNN, 

LSTM, and CNN-LSTM models may be constrained by the specific datasets and parameters employed during training. 

Hyperparameter selection significantly influences model performance; thus, future studies could benefit from implementing 

automated hyperparameter optimization techniques to enhance efficiency. Furthermore, this study did not explore other high-

performing machine learning models, leaving an opportunity for future research to investigate whether the incorporation of 

additional models could improve predictive accuracy. 

Another area for improvement involves the inclusion of additional market factors and external variables to refine the 

models' predictive power, as multi-factor forecasting represents a promising approach. The integration of expert evaluation 

methods could further bolster these forecasts, leading to more precise outcomes. Additionally, further clarification is needed 

regarding data preprocessing procedures, including how missing values were addressed, the normalization techniques utilized, 

and the feature selection process. A more transparent explanation of the division between training, validation, and test datasets 

would enhance the reliability of model evaluation.  

The inclusion of more comprehensive visualizations, such as error distribution charts and comparisons between predicted 

and actual values, could provide deeper insights into model performance. Future research should focus on a more detailed 

analysis of why models like CNN-LSTM outperform others in predicting the China Containerized Freight Index (CCFI), 

aligning these findings with existing literature. Moreover, the practical implications of these results, particularly in their 

application to decision-making and risk management in the shipping industry, should be emphasized further. Finally, the study 

should address limitations related to sample data, model selection, and the impact of external environmental factors on 

predictions. Future work should explore the adaptability of these models to varying market conditions and consider integrating 

expert insights to enhance the practical utility and accuracy of the predictions. 
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